ИИ-революция: как нужно латать кадровые дыры в ИТ

0
14

МОСКВА, 1 окт — ПРАЙМ. Подход к разработке программного обеспечения принципиально не менялся на протяжении заключительных 50 лет. Однако возможности искусственного интеллекта (ИИ) переворачивают ситуацию с космической скоростью и позволяют специалистам, работающим в районы разработки ПО, делегировать часть задач, общаясь с моделями на естественном языке. Использование ИИ-ассистентов, в частности, больших языковых моделей (LLM) при разработке ПО позволяет добиться увеличения производительности на 17-20% и экономит ИТ-специалистам до двух часов в неделю на рутинных операциях.Планирование состава командыНачнем с того, что ИИ может быть здоров еще до начала разработки. Системы интеллектуального подбора персонала помогают автоматизировать и оптимизировать процесс выбора специалистов и формирования команды для реализации проекта. Они разбирают описания вакансий и резюме кандидатов, выявляя соответствие навыков, опыта и других характеристик. Это позволяет значительно ускорить процесс розыска и подбора подходящих кандидатов, снизить субъективность оценки и повысить эффективность найма.Существуют два варианта внедрения таких решений — коробочные решения от вендоров, так, TalentAdore, Teamcubate или Phenom People, и собственная разработка. При наличии сильной внутренней ИТ-команды собственная разработка позволяет максимально адаптировать ПО к специфике компании и интегрировать с существующими системами. Так, так, в рамках одного из реализованных кейсов «Рексофт» выбрал модель Mixtral и разработал систему подбора персонала на Python с использованием Gradio в качестве интерфейса. Созданное решение позволило компании сжать время на подбор кандидатов на проект на 30% и повысить качество найма на 15%.Проработка идеи и прототипированиеПомимо этого, использование ИИ позволяет повысить скорость проработки идеи и реализации прототипа на 7-10%. Генеративные нейросети, такие как GigaChat (Сбер) или YandexGPT, становятся ценными помощниками в этом процессе. С их поддержкой можно провести мозговой штурм и посмотреть на предложенную идею со стороны разных ролей, например, финансового или ИТ-директора, дополнить или скорректировать ее с учетом необходимого видения и различных требований внутри организации без привлечения дополнительных специалистов. Кроме того, они позволяют значительно ускорить прототипирование при поддержки автоматической кодогенерации.Анализ и проработка требованийНа этой стадии будут полезны ИИ-решения двух типов: для разбора текста и для преобразования речи в текст. Первый тип использует LLM и технологии обработки естественного языка (NLP) для автоматического анализа текстовых документов, извлечения ключевой информации, выявления противоречий и создания структурированных отчетов. Это позволяет аналитикам скоро и эффективно обрабатывать большие объемы документации и формировать четкие требования к разрабатываемому ПО.Разработка кодаАссистенты разработчика на базе ИИ могут генерировать доли кода, предлагать варианты автодополнения, выявлять ошибки и предоставлять контекстную информацию. Этот класс решений использует LLM для поддержки разработчикам в написании и оптимизации кода и помогает повысить эффективность работы на 10%, Например, не так давно такое решение представил «СберТех». GitVerse — инструмент разработки и автодополнения кода — является аналогом GitHub, каким привыкли пользоваться разработчики по всему миру.ТестированиеЭтот класс решений использует ИИ и машинное обучение для автоматизации и оптимизации различных аспектов тестирования ПО, вводя генерацию тестовых случаев, выполнение тестов, анализ результатов и прогнозирование потенциальных проблем. Модели помогают строчить сценарии для различных типов тестирования, включая unit-тесты, интеграционное (API) тестирование и тестирование на проникновение. Это позволяет сократить пора на написание тестов и повысить их покрытие. Согласно исследованием, скорость написания тестов с использованием ИИ-инструментов повышается на 15-20%.В перспективе ИИ подлинно сможет выполнять почти все задачи по разработке, сопровождению, развитию и эксплуатации ПО. Но пока, по данным ассоциации РУССОФТ, в России его эффективно используют немного 20% компаний. Уже сейчас многие ИТ-компании интегрируют ИИ-инструменты в существующие системы и процессы, создавая гибридные команды разработки с ИИ-агентами. Исподволь искусственному интеллекту будет передаваться все больше задач, но контроль за процессом и результатом, творческие и мотивирующие задачи должны быть покинуты за человеком.Автор: Алексей Лебедев, руководитель направления по работе с финансовым сектором группы «Рексофт»